MANAV RACHNA Ividyanatarikabai	MANAV RACHNA UNIVERSITY
Declared as State Private U	Jniversity under section 2f of the UGC act, 1956
DEPARTMENT OF MATHEMATICS	
	"T3, MAY 2018"
Semester: IV	Date of Exam : 15/05/2018
Subject:Struc.on Differentiable Manifold	Subject Code: MAH 631
Branch: M.Sc(Maths)	Session: Even
Course Type: Core	Course Nature: Hard
Time: 3 Hours	Program: M.Sc

Part A:- Attempt any two Questions. Part B & Part C: Attempt any two questions from each part.

Part A

Program: M.Sc

Signature: HOD/Associate HOD:

(5)

Q.1.(a) Determine the integral curve for the vector fields in
$$R^2$$
 given by $X = \frac{x^1 \partial}{\partial x^1} + x^2 \frac{\partial}{\partial x^2}$. (5)

b) If X and Y are differentiable vector field in R^2 defined by $X = (x^1)^2 \frac{\partial}{\partial x^1}$, $Y = \frac{\partial}{\partial x^1} + \frac{(x^2)^2 \partial}{\partial x^2}$. (5) Compute [x,y].

Q.2.(a) Show that for a given arbitrary connection B, connection D defined by $2D_xY = B_xY - \overline{B_x\overline{Y}}$ is a F-connection. (5)

b) Show that an affine connection D on an almost complex manifold is a F-connection if and only if $D_X \overline{Y} = \overline{D_X Y}.$

Q.3.(a) Let T be the torsion tensor of the F-connection D. Then show that $T(X,Y) - T(\bar{X},\bar{Y}) = \frac{1}{2}N(X,Y)$. (5) b) If $X = xy \frac{\partial}{\partial x} + x^2 \frac{\partial}{\partial z}$, $Y = y \frac{\partial}{\partial y}$ are vector field on R^3 and the map $f: R^3 \to R$ be defined by f(x, y, z) = x^2y . Find the value of $(Xf)_{(1,1,0)}$. (5)

Part B

Q.4.(a) Show that any affine connection ∇ on a smooth manifold M can be decomposed into a sum of a multiple of its torsion tensor and a torsion free connection. (10)

b) If
$$F'(X, Y) = g(\overline{X}, Y)$$
, then show that ,
i) $F'(X, Y) = -F'(Y, X)$
ii) $F'(\overline{X}, \overline{Y}) = F'(X, Y)$
iii) $F'(\overline{X}, Y) = -F'(\overline{X}, \overline{Y}) = -g(X, Y) \quad \forall X, Y \in TM.$
(10)

Q.5.a) Let M be an almost Hermitian manifold with almost complex structure J and Hermitian metric g. Then show that the covariant derivative ∇ of the Riemannian connection defined by g, the fundamental 2-form and the torsion N of J satisfy

$$2g((\nabla_X J)Y, Z) - g(JX, N(Y, Z)) = 3d\phi(X, JY, JZ) - 3d\phi(X, Y, Z)$$

Y,Z on M. (10)

for any vector fields X, Y, Z on M.

Max.Marks: 100

b) Let M be an almost complex manifold with almost complex structure J and Hermitian metric g. Prove the following equivalence

i) $\nabla \overline{J} = 0.$ ii) $\nabla \phi = 0.$ (10)

Q.6.a) Let M be an almost complex manifold with almost complex structure J. Prove that M is a complex manifold if and only if M admits a linear connection ∇ s.t $\nabla J = 0$ and T = 0, where T denotes the torsion of ∇ . (10)

b) Prove that an almost Hermitian manifold is a Kaehler manifold if and only if $\nabla_X \overline{Y} = \overline{\nabla_X Y}$. (10)

Part C

Q.7.a) Show that for a Kaehler manifold the following relation holds i) $R(X,Y) \overline{Z} = \overline{R(X,Y)Z}$ ii) $\overline{R(X,Y) \overline{Z}} = -R(X,Y)Z.$ (10)

b) Show that the Ricci tensor S of a Kaehler manifold M satisfy

 $(\nabla_Z S)(X, Y) = (\nabla_X S)(Y, Z) + (\nabla_{\mathsf{j}Y} S)(\mathsf{J}X, Z).$ (10)

Q.8.a) Show that for a Kaehlerian manifold S(JX, JY) = S(X, Y) and $S(X, Y) = \frac{1}{2}(trace \ of \ JR(X, JY))$ for any vector fields X and Y on M. (10)

b) Let M be a real 2n-dimensional Kaehler manifold. Show that if M is of constant curvature then M is flat provided n>1. (10)

Q.9.a) Show that for any quaternion Kaehlerian manifold M of dimension n = 4m(m>1), the Ricci tensor S of M is parallel. (10)

b) Show that any quaternion Kaehler manifold of $dim \ge 8$ is an Einstein manifold. (10)