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Part A:- Attempt any two Questions. Part B & Part C:Attempt any two questions from each part.

Part A
Q.1.(a) Determine the integral curve for the vector fields in R? given by X = ’:Tf + x2 %. (5)
212
b) If X and Y are differentiable vector field in R?defined by X = (x1)2 % , Y= % + %. (5)

Compute [x,y].

Q.2.(a) Show that for a given arbitrary connection B, connection D defined by 2D,Y = B,Y — B, Y isa

F-connection. (5)
b) Show that an affine connection D on an almost complex manifold is a F-connection if and only if

Q.3.(a) Let T be the torsion tensor of the F-connection D. Then show that T(X,Y) — T(X,Y) = % N(X,Y). (5)

b) If X = xyaa_x +x2 L y= y:—y are vector field on R3 and the map f: R® — R be defined by f(x,y,z) =

5;
x2y. Find the value of (Xf)(1,1,0)- (5)
Part B
Q.4.(a) Show that any affine connection V on a smooth manifold M can be decomposed into a sum of a multiple
of its torsion tensor and a torsion free connection. (10)
b) If F'(X,Y) = g(X,Y), then show that ,
) F'(X,Y) = —F'(Y,X)
i) F'(X,Y) = F'(X,Y)
i) F'(X,Y) = —F'(X,Y) = —g(X,Y) VX, Y € TM. (10)

Q.5.a) Let M be an almost Hermitian manifold with almost complex structure J and Hermitian metric g. Then
show that the covariant derivative V of the Riemannian connection defined by g , the fundamental 2-form and
the torsion N of J satisfy

29((VxDY,Z) = g(X, N(Y,2)) = 3dp(X,]Y,]Z) — 3dp(X,Y, Z)
for any vector fields X,Y,Z on M. (20)
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b) Let M be an almost complex manifold with almost complex structure J and Hermitian metric g.

Prove the following equivalence

V/=0.

i) Vp = 0. (10)

Q.6.a) Let M be an almost complex manifold with almost complex structure J. Prove that M is a complex
manifold if and only if M admits a linear connection Vs.tV/ = 0 and T = 0, where T denotes the

torsion of V. (10)
b) Prove that an almost Hermitian manifold is a Kaehler manifold if and only if Vi Y = VY. (10)

Part C

Q.7.a) Show that for a Kaehler manifold the following relation holds
VR(X,Y)Z = R(X,YV)Z
i) R(X,Y)Z = —R(X,Y)Z. (10)

b) Show that the Ricci tensor S of a Kaehler manifold M satisfy
(V2 X, Y) = (VxS)(Y, 2) + (VyS) (X, 7). (10)

Q.8.a) Show that for a Kaehlerian manifold S(JX,JY) = S(X,Y) and S(X,Y) = %(trace of JR(X,JY))

for any vector fields X and Y on M. (10)
b) Let M be a real 2n-dimensional Kaehler manifold. Show that if M is of constant curvature then M is flat
provided n>1. (10)
Q.9.a) Show that for any quaternion Kaehlerian manifold M of dimension n =4m(m>1) , the Ricci tensor S

of M is parallel. (10)
b) Show that any quaternion Kaehler manifold of dim > 8 is an Einstein manifold. (10)
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